
RS-232C Serial Interface Documentation  

Power Supply – Models: 1785B, 1786B, 1787B, 1788 

 

Packet Structure 

The DC Load is programmed using packets of bytes. A packet always contains 26 bytes in 

hexadecimal, either going to or coming from the instrument. The basic programming rule is: 

You send a 26 byte packet to the instrument. You 

then read a 26 byte packet back from the DC Load to 

either  

• Get the status of your submitted packet, or  
• Get the data you requested. 

 

The following are conventions to follow: 

1. Hexadecimal integers will be represented by the prefix 0x. 

2. Numbers are in base 10 number system unless otherwise indicated. 

3. Byte numbering is zero-based, meaning numbering starts with 0. 

4. Some commands are sent in little-endian format.  Refer to example for details. 

The structure of each 26 byte packet is: 

Byte 0 Byte 1 Byte 2 Byte 3 to 24 Byte 25 

0xAA Address Command Command’s data Checksum 

 

• 0xAA is ALWAYS the first byte of any command packet or returned packet.  

• Address must be a byte that is between 0x00 and 0xFE. Setting of the address is optional. It is 

not required to communicate with the instrument. The address can be set from the front panel 

and is stored in non-volatile memory. This feature is useful when communicating via USB, 

and connecting several instruments, e.g. via a USB hub. In this scenario, Windows assigns a 

virtual COM port to each device which is unknown prior to establishing communications with 

the instrument (could be different each time). In this case, the user can correlate each virtual 

COM port randomly assigned by Windows with a user defined address. 

• Command is a byte that identifies which DC Load command is used. 



• Command’s data contains parameter information for the command or the data that is 

requested via a previous command. Some commands have no data at all. It is a good 

programming practice to set all unused bytes to 0x00. 

• Checksum is the number of the arithmetic sum of each of the bytes modulo 256.  Basically, 

the sum of byte 0 to byte 25 equals the value of byte 26.  In some cases, the checksum value 

may be in 3 digit hex.  When this happens, take only the last two digits only as the checksum 

value.  For example, if checksum value = 0x2AC, checksum value for the last byte is 0xAC.  

The “2” will not be used.  

Status Packets 

When you send a command that does not cause the DC Load to send requested information back to 

you, you will receive a status packet back. The structure of a status packet is 

 

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 to 24 Byte 25 

0xAA Address 0x12 Status byte Reserved Checksum 

• 0x12 is the status command to indicate that it is a return packet. 

• Status byte returns the status of the instrument after sending a command.  The returned 

values are defined by the table below: 

0x90 Checksum incorrect 

0xA0 Parameter incorrect 

0xB0 Unrecognized command 

0xC0 Invalid command 

0x80 Command was successful 

Examples 

 

1. Turning on Remote mode to ON 

• The command to adjust remote mode is 0x20.  The structure of the command is indicated as: 

0x20 Set the DC Load to remote operation 

Byte offset Meaning 

3 0 means front panel operation. 

1 means remote operation. 

4-24 Reserved 

• To turn on remote mode, the following command needs to be sent to the instrument as follows: 

AA 00 20 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 CB 



o AA is the first byte, and 20 indicates the command to send, which is for remote 
mode.  01 tells the load to turn on remote operation.  CB is the checksum, 
meaning AA + 20 + 1 = CB in hex. 

• If the command is sent correctly, the following string will be in the return packet: 
AA 00 12 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3C 

o AA is the first byte, and 12 indicates that it’s a return packet.  80 is the status 
byte, which in this case means command sent was successful.  3C is the 
checksum, meaning AA + 12 + 80 = 3C in hex. 

• If there was an error or the command was not sent correctly, the return string may give 
you a different value for the Status byte.  The most common one is 90, which means 
the checksum was calculated incorrectly. 

 
2.  Setting Maximum Output Voltage 
 

• Some commands seem more complex than they are.  Setting maximum voltage is one 
of them.  Below is the command instruction for setting maximum voltage on the load. 

 

0x22 Setting Maximum Output Voltage 

Byte offset Meaning 

3 Lower low byte of maximum voltage. 1 represents 1 mV. 

4 Lower high byte of maximum voltage. 

5 Upper low byte of maximum voltage. 

6 Upper high byte of maximum voltage. 

7-24 Reserved 

The description is a bit cryptic, but the example below will explain how to set it up properly. 

Example:  Set maximum voltage to 16.23 V. 
1. According to this command, 1 represents 1 mV.  This is the LSB decimal 

representation, meaning that each decimal value equates to 1 mV.  This 
will be the conversion formula to follow by.  Therefore, in this example 
16.23 V would represent 16,230 in decimal (16,230 mV = 16.23 V). 

2. Now, this decimal needs to be converted to hexadecimal.  16,230 in 
hexadecimal equates to 0x00003F6A in 4 bytes. 

3. Since the format is in little-endian format, the 4 bytes of hexadecimal 
values are arranged as 0x6A3F0000. 

4. According to the above table, Byte offset 3 would be 6A, 4 is 3F, 5 is 00, 
and 6 is 00. 

5. Putting it all together, to set maximum voltage to 16.23 V, the following 
command is sent: 

        AA 00 22 6A 3F 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 75 



o AA is always the first byte; 22 is the command byte for setting maximum voltage; 
6A, 3F, and the following 2 bytes of 00’s represent the 16.23 V value.  The 
remainder of the 00’s are the reserved bytes and are not used.  Hence, the 
value is just 0.  The checksum is 75 since AA + 22 + 6A + 3F = 175.  Taking 
the last two values, it becomes 75. 

Additional Notes 
 

• For detailed information on all other supported commands, please refer to user manual. 

• If you are programming in a language that supports object oriented programming, a high 

level python library is available for download at www.bkprecision.com to save time.  The 

library can be used as a COM server object, allowing other common object oriented 

programming languages to utilize the methods in the object.  The library is like an API, 

and it does all the bit manipulation and data conversion so that setting voltage is as 

simple as calling a function.  It has been tested and successfully used in programming 

languages such as VB, C#, and of course Python. 

 

http://www.bkprecision.com/

