

Cargas Electrónicas DC Programables

**Serie 8600/B** 



2U medio-estante

La Serie 8600/B, las Cargas Electrónicas DC Programables de B&K Precision proveen el rendimiento de cargas electrónicas DC de sistema modular en un diseño compacto, con factor de forma para uso de banco. Su operación transitoria y rápida medición de alta resolución de 16 bits, hacen que estas cargas DC independientes puedan ser utilizadas para probar y evaluar gran variedad de fuentes DC: fuentes de alimentación DC, convertidores DC-DC, baterías, cargadores de baterías y paneles fotovoltaicos.

Estas cargas DC pueden operar en los Modos: Corriente Constante (CC), Voltaje Constante (CV), Resistancia Constante (CR), o Potencia Constante (CW) y ser configuradas para brindar cambios dinámicos de carga a la fuente DC, con tiempos de conmutación de carga rápidos. Poseen opciones de disparos versátiles: internos, externos y remotos, que permiten sincronizar el comportamiento de la carga dinámica con otros eventos.

Aumente su productividad, almacenando todos los parámetros de pruebas en cualquiera de las 100 áreas de memoria del sistema, para recordarlos con rapidéz. Todos los parámeteros de la carga, como los de voltaje, corriente, velocidad de respuesta y ancho pueden ser configurados desde el panel frontal o remotamente.

La Serie 8600/B ofrece interfaces seriales USB (Compatible USBTMC), y RS232 estándar para comunicación remota. La interfaz GPIB esta disponible como una opción en modelos selectos. Para asegurar la veracidad de su prueba, la Serie 8600/B ofrece un sistema de autoprueba al encendido, además de numerosas características de protección contra exceso de temperatura (OTP), voltaje (OVP), corriente (OCP), potencia (OPP), y voltaje reverso local/remoto (LRV/RRV).

## Aplicaciones Especiales

La Serie 8600/B posee un modo de prueba de batería incorporado para medir la característica Amperio-hora (Ah) de una batería, y un modo CR-LED único para simular el comportamiento de carga típico de un LED.

## Características y Beneficios

- Rango de voltaje de hasta 500 V
- Rango de corriente de hasta 720 A
- Modos de operación CC/CV/CR/CW
- Sistema de mediciones de corriente y voltaje de 16 bits
- Modo transitorio de hasta 25 kHz en modo CC
- Función de modo lista

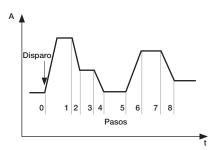






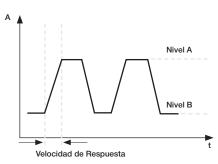


## Características y Beneficios (Cont.)


- Guarda/trae de memoria hasta 100 configuraciones
- Modo de Velocidad de Respuesta Ajustable en CC
- Opciones de disparos flexibles vía panel frontal, entrada externa, temporizador o bus
- Función de prueba de baterías incorporada con niveles de voltaje y capacidad, y condiciones de parada del temporizador
- Modos de prueba para validar la función de protección OCP/OPP de la fuente de poder
- Modo CR-LED para simular el comportamiento típico de LEDs
- Sensado remoto
- Control y monitoreo analógico de corriente
- Ventilador controlado termostáticamente
- Interfaces USB (Compatible USBTMC) v RS232 estandar soportando comandos SCPI para control
- Interfaz GPIB es opcional en modelos selectos
- Protecciones contra exceso de Voltaje (OVP), Corriente (OCP), Potencia (OPP) y Temperatura (OTP) incluyendo Voltaje Reverso Local y Remoto (LRV/RRV)

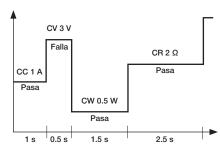
| Modelo                  | 8600/B*          | 8601/B*   | 8602/B*   | 8610/B*   | 8612/B*   | 8614/B*   | 8616      | 8620      | 8622      | 8624      | 8625      |
|-------------------------|------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Potencia                | 150 W            | 250 W     | 200 W     | 750 W     | 750 W     | 1500 W    | 1200 W    | 3000 W    | 2500 W    | 4500 W    | 6000 W    |
| Voltaje de<br>Operación | 0 – I20 V        | 0 – I20 V | 0 – 500 V | 0 – I20 V | 0 – 500 V | 0 – I20 V | 0 – 500 V | 0 – I20 V | 0 – 500 V | 0 – I20 V | 0 – I20 V |
| Rango de<br>Corriente   | 0 – 30 A         | 0 – 60 A  | 0 – I5 A  | 0 – I20 A | 0 – 30 A  | 0 – 240 A | 0 – 60 A  | 0 – 480 A | 0 – 100 A | 0 – 600 A | 0 – 720 A |
| Factor de<br>Forma      | 2U medio-estante |           |           | 3U        |           |           |           |           |           | 6         | u         |

<sup>\*</sup>Los números de modelos con el sufijo B (86xxB) no incluyuen interfaz GPIB. Vea la página 9 para información detallada para ordenar su producto.


## **Operación Flexible**

## Modo de Lista

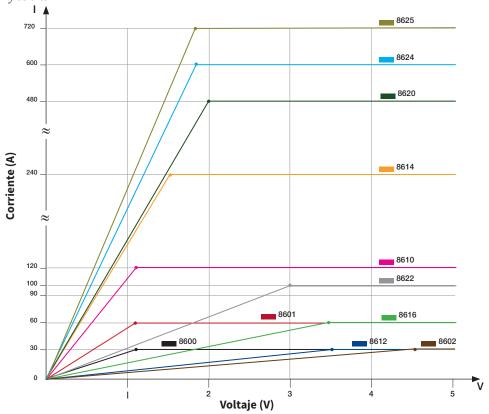



El Modo Lista permite generar secuencias de cambios de entrada más complejas con varios niveles diferentes. Puede almacenar hasta 7 grupos de archivos lista, y cada lista puede contener un máximo de 84 pasos con un ancho de tiempo mínimo de 20 µs por paso.

## **Operación Transitoria**



La Operación Transitoria habilita el módulo para alternar periódicamente entre 2 niveles de carga. Las características transitorias y de regulación de la fuente de alimentación pueden ser evaluadas monitoreando la salida de voltaje, bajo varias combinaciones de niveles de carga, frecuencias, ciclos de trabajo y rapidéz de respuesta. La operación transitoria puede simular estas condiciones.


## Modo de Prueba Automático



El Modo de Prueba Automático de la Serie 8600/B permite ejecutar múltiples secuencias de prueba, y enlazar hasta 100 secuencias diferentes para ejecutar pasos bajo diferentes modos de funcionamiento y condiciones de carga. Cada secuencia puede ser programada con los criterios Pasa/Falla, utilizando límites bajos y altos establecidos. En pruebas de producción, el veredicto Pasa/Falla permite juzgar de inmediato si los parámetros del dispositivo están dentro de los límites especificados para ajustar el proceso.

## Operación de Bajo Voltaje

La Serie 8600/B puede operar a bajo voltaje siendo ideal para aplicaciones con células combustibles y solares.



| Voltaje m | ıínimo típi | co de ope | ración, a c | ompleta e | escala de o | orriente: |      |      |       |       |
|-----------|-------------|-----------|-------------|-----------|-------------|-----------|------|------|-------|-------|
| 8600      | 8601        | 8602      | 8610        | 8612      | 8614        | 8616      | 8620 | 8622 | 8624  | 8625  |
| 1.1 V     | 1.1 V       | 4.5 V     | 1.2 V       | 3.6 V     | 1.5 V       | 3.6 V     | 2 V  | 3 V  | 1.8 V | 1.8 V |

## **Modo CR-LED**

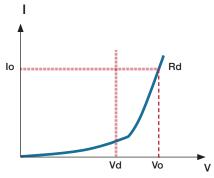


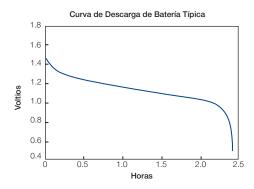

Figura - Curva I-V LED

Vd = Voltaje Directo LED

Rd = Operación de Resistencia LED

Vo = Operación de Voltaje a través del LED

lo = Operación de Corriente a través del LED

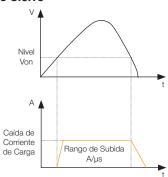

Utilice el Modo de Operación CR-LED único de la carga para probar los controladores LED. Esta función permite al usuario configurar la Operación de Resistencia y el Voltaje Directo de un LED (igual que la operación CR) para simular el comportamiento típico de un LED.

## **Programación y Control Remoto**

## Poderoso Interfaz de Comunicación

La Serie 8600/B ofrece interfaces USB y RS232 estándar para comunicación remota. El interfaz GPIB está disponible como una opción en modelos selectos. Estas interfaces ofrece los protocolos de comunicación SCPI y USBTMC estándar para controlar su carga electrónica desde una PC.

## Función de Prueba de Batería




La función de prueba de batería incorporada utiliza el Modo CC para calcular la capacidad de batería, utilizando una descarga de corriente de carga fija. El usuario puede especificar las condiciones de corte en los niveles de voltaje, y de capacidad, y el tiempo de parada.

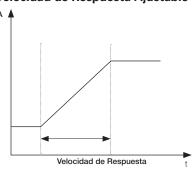
# Programación Analógica Externa e Interfaz de Monitoreo

En adición al panel frontal y la interfaz de control remoto, los valores de corriente pueden ser programados con una señal de control analógico. Las cargas electrónicas pueden ser controladas externamente desde 0 a escala completa con una señal de entrada de 0-10 V. Una salida BNC en la parte posterior permite monitorear la corriente con una señal de salida de 0-10 V.

# Operación de Bloqueo "Voltage-on" (Von) de Cierre

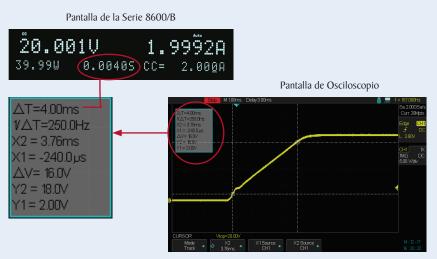


Controle el estado de la entrada de voltaje de la carga electrónica DC, configurando la función de Bloqueo Voltage-on (Von). Ésta puede ser utilizada para iniciar o interrumpir la descarga de una batería u otra fuente de poder al alcanzar cierto nivel específico de voltaje.


## Software de Aplicación



El software de aplicación para PC permite realizar emulaciones desde el panel frontal, o generar y ejecutar secuencias de pruebas o registrar datos de medición sin necesidad de escribir un código fuente. En adición, este software se integra con un Data Dashboard NI para LabVIEW, y permite al usuario crear un tablero personalizado en una computadora de tableta o teléfono inteligente para monitoreo de cargas electronicas DC de la Serie 8600/B a través del software desde una PC.


- Permite el monitoreo remoto con tabletas o teléfonos inteligentes compatibles iOS, Android o Windows 8 vía Data Dashboard NI para aplicaciones LabVIEW<sup>TM</sup>
- Registre los valores de voltaje, corriente, y potencia con una estampa de tiempo
- Ejecute operaciones transitorias y programas de modo lista remotamente
- Genere un número ilimitado de archivos de lista externa, para ser ejecutados desde la memoria de una PC

## Velocidad de Respuesta Ajustable



En el modo CC, el usuario puede controlar la velocidad o la inclinación de los cambios de corriente en pruebas de respuesta transitoria. La velocidad de respuesta, tan baja como 0.00I A/ms o tan rápida como 2.5 A/μs, dependiendo del modelo y el rango de corriente seleccionado.

## Mediciones de Tiempo de Subida/Caída Incorporadas



La Serie 8600/B puede medir los tiempos de subida o caída del voltaje medido, con un nivel de voltaje de inicio/final específico para medir la entrada, sin la necesidad de un osciloscopio. Esta función también puede ser utilizada como temporizador interno para medir por cuánto tiempo la entrada permanece habilitada.

## ► Modelos 8600/B, 8601/B & 8602/B

# Pantalla Brillante Doble Línea La pantalla de esta Serie 8600/B muestra los parámetros medidos de entrada y los configurados simultáneamente Perilla de Control Rotatoria Perilla de Control Rotatoria Modelo TLPWR1 Accesorio para Puntas de Prueba de Alta Corriente

## Interfaz Intuitiva para el Usuario

El teclado numérico y la perilla rotatoria proveen una interfaz práctica para configurar el modo de operación y los niveles de corriente, voltaje y resistencia deseados de manera rápida y precisa.

Llaves de

**Cursores** 

Llaves de

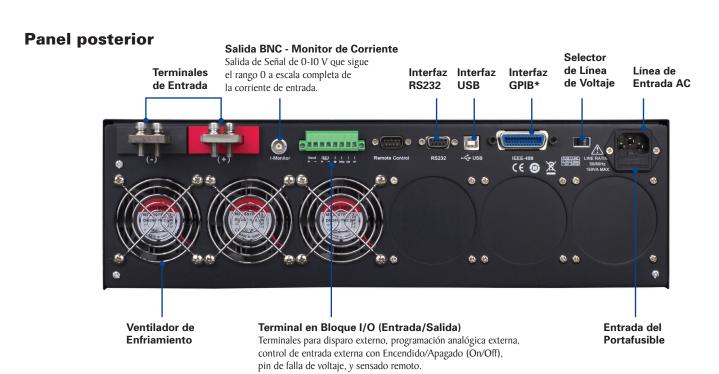
**Funciones** 

Terminal de Entrada

de la Carga

## **Panel posterior**




<sup>\*</sup>El interfaz GPIB es opcional en modelos selectos. Vea la información detallada para ordenar en la página 9.

Teclado

Numérico

## ▶ Modelos 8610/B, 8612/B, 8614/B, 8616, 8620, 8622 (3U)

# Pantalla Brillante Doble Línea La pantalla de esta Serie 8600/B muestra los parámetros de entrada configurados y los medidos simultáneamente. Llaves de Modos Llaves de Llaves de Funciones Cursores Llaves de Modos Cursores Llaves de Funciones Teclado Numérico 1.26A 81.56U 1.26A



## ▶ Modelos 8624 & 8625 (6U)



Los modelos con factor de forma 6U utilizan el mismo interfaz en el panel frontal que los modelos 3U



Las configuraciones del panel posterior de los modelos 6U y 3U son idénticas, sin embargo, la cantidad de ventiladores instalados varía según el modelo.

<sup>\*</sup>El interfaz GPIB es opcional en modelos selectos. Vea información detallada para ordenar en la página 9.

## **Especificaciones**

| Mod                    | elo              | 8600/B                                    | 8602/B                      |                         |  |  |  |
|------------------------|------------------|-------------------------------------------|-----------------------------|-------------------------|--|--|--|
| Rangos de En           | trada            |                                           |                             |                         |  |  |  |
| Voltaje de             | Entrada          | 0 – I20 V                                 | 0 – I20 V                   | 0 – 500 V               |  |  |  |
| Corriente              | Baja             | 0 – 3 A                                   | 0 – 6 A                     | 0 – 3 A                 |  |  |  |
| de Entrada             | Alta             | 0 – 30 A                                  | 0 – 60 A                    | 0 – I5 A                |  |  |  |
| Potencia de            | e Entrada        | 150 W                                     | 250 W                       | 200 W                   |  |  |  |
| Voltaje                | Bajo             | 0.11 V en 3 A                             | 0.18 V en 6 A               | IV en 3 A               |  |  |  |
| Mínimo de<br>Operación | Alto             | I.I V en 30 A                             | I.I V en 60 A               | 4.5 V en I5 A           |  |  |  |
| Modo CV (Vol           | taje Constant    | e)                                        |                             |                         |  |  |  |
| Rango                  | Bajo             | 0.1 -                                     | - 18 V                      | 0.1 – 50 V              |  |  |  |
|                        | Alto             | 0.1 –                                     | 120 V                       | 0.1 – 500 V             |  |  |  |
| D 1 17                 | Baja             |                                           | I mV                        |                         |  |  |  |
| Resolución             | Alta             |                                           | IO mV                       |                         |  |  |  |
| F. m. l                | Baja             | ±(0.05%+<br>0.02% FS*)                    | ±(0.025%+<br>0.05% FS*)     | ±(0.05%+<br>0.025% FS*) |  |  |  |
| Exactitud              | Alta             | ±(0.05%+ ±(0.025%+ 0.025% FS*) 0.05% FS*) |                             | ±(0.05%+<br>0.025% FS*) |  |  |  |
| Modo CC (Cor           | riente Consta    | inte)                                     |                             |                         |  |  |  |
| D.                     | Bajo             | 0 – 3 A                                   | 0 – 6 A                     | 0 – 3 A                 |  |  |  |
| Rango                  | Alto             | 0 – 30 A                                  | 0 – 60 A                    | 0 – I5 A                |  |  |  |
| D 1 1/                 | Baja             |                                           |                             |                         |  |  |  |
| Resolución             | Alta             |                                           |                             |                         |  |  |  |
| F 1                    | Baja             |                                           | ±(0.05%+0.05% FS*           | *)                      |  |  |  |
| Exactitud              | Alta             |                                           | .)                          |                         |  |  |  |
| Modo CR (Res           | istencia Cons    | stante)                                   |                             |                         |  |  |  |
| D                      | Bajo             | 0.05 Ω                                    | $0.3~\Omega - 10~\Omega$    |                         |  |  |  |
| Rango                  | Alto             |                                           |                             |                         |  |  |  |
| Resolu                 | ıción            | I6 bits                                   |                             |                         |  |  |  |
| Exactitud              | Alta             | 0                                         | 0.01%+0.08 S (12.5 <b>c</b> | 08 S (I2.5 Ω)           |  |  |  |
| (I>10%<br>del rango)   | Baja             | 0.0                                       | 01%+0.0008 S (1250          | Ω)                      |  |  |  |
| Modo CW (Po            | der Constant     | e)                                        |                             |                         |  |  |  |
| Ran                    | go               | 150 W                                     | 200 W                       |                         |  |  |  |
| Resolu                 | ıción            |                                           | IO mW                       |                         |  |  |  |
| Exact                  | itud             | 0.1% + 0.1% FS*                           | 0.1% + 0.1% FS*             |                         |  |  |  |
| Modo Transito          | orio (Modo CC    |                                           |                             |                         |  |  |  |
| TI & 1                 | 2 <sup>(I)</sup> | 20 μs – 3600 s / Resolución: 10 μs        |                             |                         |  |  |  |
| Exact                  | itud             | 5 μs + 100 ppm                            |                             |                         |  |  |  |
| Velocidad de           | Alta             | 0.001-2.5 A/ms                            |                             |                         |  |  |  |
| Respuesta (2)          | Baja             | 0.001-2                                   | 0.00I-I A/μs                |                         |  |  |  |

<sup>\*</sup>FS (Full Scale) A Escala Completa

<sup>(2)</sup> Las especificaciones de velocidad de respuesta no son garantizadas, pero son descripciones de rendimiento típico. El tiempo de transición actual está definido como el tiempo que toma la entrada en cambiar de 10% a 90%, o viceversa, de los valores de corriente programados. En caso de un gran cambio de carga, por ejemplo de no-carga a carga completa, el tiempo de transición actual será más largo que el tiempo esperado. La carga ajustará la velocidad de respuesta automáticamente para encajar dentro del rango (alto o bajo) más cercano al valor programado.

| Lectura de Volt                         | ·              |                                                                                                                                            |                       |                        |  |  |  |
|-----------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|--|--|--|
| Rango                                   | Alto           | 0 – 18 V                                                                                                                                   | 0 – 18 V              | 0 – 50 V               |  |  |  |
|                                         | Bajo           | 0 – I20 V                                                                                                                                  | 0 – I20 V             | 0 – 500 V              |  |  |  |
| Resolución                              | Alta           |                                                                                                                                            | I mV                  | I mV                   |  |  |  |
| Baja                                    |                | I                                                                                                                                          | mV                    | IO mV                  |  |  |  |
| Exactit                                 | ud             |                                                                                                                                            | ±(0.05%+0.05% FS*     | *)                     |  |  |  |
| Lectura de Corr                         | iente          |                                                                                                                                            | l                     | l                      |  |  |  |
| Rango                                   | Alto           | 0 – 3 A                                                                                                                                    | 0 – 6 A               | 0 – 3 A                |  |  |  |
|                                         | Bajo           | 0 – 30 A                                                                                                                                   | 0 – 60 A              | 0 – I5 A               |  |  |  |
| Resolución                              | Alta           | 0.01 mA                                                                                                                                    | 0.1 mA                | 0.01 mA                |  |  |  |
| Resolucion                              | Baja           | 0.1 mA                                                                                                                                     | I mA                  | 0.1 mA                 |  |  |  |
| Exactit                                 | ud             | ±(0.05%+<br>0.05% FS*)                                                                                                                     | ±(0.05%+<br>0.1% FS*) | ±(0.05%+<br>0.05% FS*) |  |  |  |
| Lectura de Pote                         | ncia           |                                                                                                                                            |                       |                        |  |  |  |
| Range                                   | o              | 150 W                                                                                                                                      | 250 W                 | 200 W                  |  |  |  |
| Resoluc                                 | ión            |                                                                                                                                            | IO mW                 |                        |  |  |  |
| Exactitud                               |                | ±(1%+0.1%<br>FS*)                                                                                                                          | ±(0.2%+0.2%<br>FS*)   | ±(0.1%+0.1%<br>FS*)    |  |  |  |
| Rango de Prote                          | cción (típico) |                                                                                                                                            |                       |                        |  |  |  |
| OPP (Exceso de                          | e Potencia)    | 150 W                                                                                                                                      | 250 W                 | 200 W                  |  |  |  |
| OCP (Exceso                             | Baja           | 3.3 A                                                                                                                                      | 6.6 A                 | 3.3 A                  |  |  |  |
| de Corriente)                           | Alta           | 33 A                                                                                                                                       | 66 A                  | 16.5 A                 |  |  |  |
| OVP (Exceso o                           | le Voltaje)    | 120 V                                                                                                                                      | 120 V                 | 500 V                  |  |  |  |
| OTP (Exceso de                          | Temperatura)   | 185 °F (85 °C)                                                                                                                             |                       |                        |  |  |  |
| Corto Circuito (                        | v)             |                                                                                                                                            |                       |                        |  |  |  |
| Corriente                               | Baja           | 3.3 A                                                                                                                                      | 6.6 A                 | 3.3 A                  |  |  |  |
| Constante (CC)                          | Alta           | 33 A                                                                                                                                       | 66 A                  | 16.5 A                 |  |  |  |
| Voltaje Consta                          | ante (CV)      |                                                                                                                                            |                       |                        |  |  |  |
| Resistencia Con                         | stante (CR)    | 35 mΩ                                                                                                                                      | 30 mΩ                 | 300 mΩ                 |  |  |  |
| General (típico)                        |                |                                                                                                                                            |                       | l                      |  |  |  |
| Impedancia de la<br>Terminal de Entrada |                | I50 kΩ                                                                                                                                     | 300 kΩ                | Ι ΜΩ                   |  |  |  |
| Entrada                                 | AC             | II0 V/220 V ±10%, 50/60 Hz                                                                                                                 |                       |                        |  |  |  |
| Temperatura de                          | Operación      | 32 °F a 104 °F (0 °C a 40 °C)                                                                                                              |                       |                        |  |  |  |
| Temperatu<br>Almacenar                  |                | 14 °F a 140 °F (-10 °C a 60 °C)                                                                                                            |                       |                        |  |  |  |
| Humed                                   | lad            | Uso en interiores ≤ 95%                                                                                                                    |                       |                        |  |  |  |
| Segurio                                 | lad            | EN61010-1:2001, Directiva de Bajo Voltaje EU 2006/95/EC                                                                                    |                       |                        |  |  |  |
| Compatib<br>Electromag                  |                | Cumple Directiva EMC 2004/108/EC, EN 61000-3-2:2006,<br>EN 61000-3-3:1995+A1:2001+A2:2005<br>EN 61000-4-2/-3/-4/-5/-6/-11, EN 61326-1:2006 |                       |                        |  |  |  |
| Dimensiones (A                          | l x An x Pr)   | 8.5" x 3.5" x 15.2" (218 x 90 x 387 mm)                                                                                                    |                       |                        |  |  |  |
| Peso                                    | 1              | 9.9 libras (4.5 kg)                                                                                                                        |                       |                        |  |  |  |
| Garant                                  | iía            |                                                                                                                                            | 3 Años                |                        |  |  |  |
| Accesorios I                            | Estándar       | Manual del usuario, cable de alimentación<br>y certificado de calibración                                                                  |                       |                        |  |  |  |
| Accesorios O                            | pcionales      | TLPWRI - Puntas de prueba de alta corriente,<br>IT-EISI - Kit para estante montable<br>(sólo en modelos 8600/B, 8601/B, y 8602/B)          |                       |                        |  |  |  |

 $<sup>^{\</sup>mbox{(I)}}$  Trenes de pulsos rápidos con largas transiciones podrían no ser alcanzados.

## **Especificaciones (Cont.)**

| Model                  | 0                | 8610/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8612/B                    | 8614/B                    | 8616                        | 8620                             | 8622                      | 8624                      | 8625                       |  |  |
|------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|-----------------------------|----------------------------------|---------------------------|---------------------------|----------------------------|--|--|
| Rangos de En           | trada            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                           |                             |                                  |                           |                           |                            |  |  |
| Voltaje de Er          | ntrada           | 0 – I20 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 – 500 V                 | 0 – I20 V                 | 0 – 500 V                   | 0 – I20 V                        | 0 – 500 V                 | 0 – I20 V                 | 0 – I20 V                  |  |  |
| Corriente              | Baja             | 0 – I2 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 – 3 A                   | 0 – 24 A                  | 0 –6 A                      | 0 – 48 A                         | 0 – I0 A                  | 0 – 60 A                  | 0 – 72 A                   |  |  |
| de Entrada             | Alta             | 0 – I20 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 – 30 A                  | 0 – 240 A                 | 0 –60 A                     | 0 – 480 A                        | 0 – 100 A                 | 0 – 600 A                 | 0 – 720 A                  |  |  |
| Potencia de E          | ntrada           | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) W                       | I500 W                    | 1200 W                      | 3000 W                           | 2500 W                    | 4500 W                    | 6000 W                     |  |  |
| Voltaje                | Bajo             | 0.12 V en 12 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.36 V en 3 A             | 0.15 V en 24 A            | 0.36 V en 6 A               | 0.2 V en 48 A                    | 0.3 V en 10 A             | 0.18 V en 60 A            | 0.18 V en 72 A             |  |  |
| Mínimo de<br>Operación | Alto             | I.2 V en I20 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.6 V en 30 A             | I.5 V en 240 A            | 3.6 V en 60 A               | 2 V en 480 A                     | 3 V en 100 A              | 18 V en 600 A             | 1.8 V en 720 A             |  |  |
| Modo CV (Vo            | taje Con         | stante)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                           |                             |                                  |                           |                           |                            |  |  |
| Rango                  | Bajo             | 0 – 18 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 – 50 V                  | 0 – I8 V                  | 0 – 50 V                    | 0 – 18 V                         | 0 – 50 V                  | 0 – 18 V                  | 0 – 18 V                   |  |  |
|                        | Alto             | 0 – I20 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 – 500 V                 | 0 – I20 V                 | 0 – 500 V                   | 0 – I20 V                        | 0 – 500 V                 | 0 – I20 V                 | 0 – I20 V                  |  |  |
|                        | Baja             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I mV                      |                           | I mV                        | I mV                             | I mV                      | I mV                      | I mV                       |  |  |
| Resolución             | Alta             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IO mV                     |                           | IO mV                       | IO mV                            | IO mV                     | IO mV                     | IO mV                      |  |  |
| Exactitud              | Baja             | ±(0.025% +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05% FS*)                | ±(0.025%+<br>0.025% FS*)  | ±(0.025%+<br>0.05% FS*)     | ±(0.025%+ + (0.025% + 0.05% FS*) |                           |                           |                            |  |  |
|                        | Alta             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                           | ±(0.025% +                  | - 0.05% FS*)                     |                           |                           |                            |  |  |
| Modo CC (Co            | rriente C        | onstante)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                           |                             |                                  |                           |                           |                            |  |  |
| Rango                  | Bajo             | 0 – I2 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 – 3 A                   | 0 – 24 A                  | 0 – 6 A                     | 0 – 48 A                         | 0 – I0 A                  | 0 – 60 A                  | 0 – 72 A                   |  |  |
|                        | Alto             | 0 – I20 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 – 30 A                  | 0 – 240 A                 | 0 – 60 A                    | 0 – 480 A                        | 0 – 100 A                 | 0 – 600 A                 | 0 – 720 A                  |  |  |
| D 1 1/                 | Baja             | I mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1 mA                    | I mA                      | 0.1 mA                      | I mA                             | I mA                      | I mA                      | I mA                       |  |  |
| Resolución             | Alta             | I0 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I mA                      | IO mA                     | I mA                        | I0 mA                            | I0 mA                     | I0 mA                     | I0 mA                      |  |  |
| F                      | Baja             | $\pm (0.05\% + \pm (0.05\% + \pm (0.05\% + 0.1\% FS*) + \pm (0.05\% + 0.1\% FS*) \pm (0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% + 0.05\% +$ |                           |                           |                             | ±(0.05%+ 0.05% FS                | ±(0.1%+ 0.1% FS*)         |                           |                            |  |  |
| Exactitud              | Alta             | ±(0.05%+<br>0.1% FS*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±(0.05%+<br>0.05% FS*)    | ±(0.05%+<br>0.1% FS*)     | ±(0.05%+ 0.05% FS*) ±(0.019 |                                  |                           |                           | + 0.1% FS*)                |  |  |
| Modo CR (Res           | sistencia        | Constante)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           |                             |                                  |                           |                           |                            |  |  |
| D                      | Bajo             | $0.02~\Omega - 10~\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.15~\Omega - 10~\Omega$ | $0.01 \Omega - 10 \Omega$ | $0.01 \Omega - 10 \Omega$   | $0.01 \Omega - 10 \Omega$        | $0.03~\Omega - 10~\Omega$ | $0.01~\Omega - 10~\Omega$ | $0.005 \Omega - 10 \Omega$ |  |  |
| Rango                  | Alto             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                           | ΙΟ Ω -                      | 7.5 kΩ                           |                           |                           | ,                          |  |  |
| Resolucio              | solución 16 bits |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                           |                             |                                  |                           |                           |                            |  |  |
| Exactitud              | Baja             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                           | 0.01%+0.0                   | 8 S (I2.5 Ω)                     |                           |                           |                            |  |  |
| (I>I0%<br>del rango)   | Alta             | 0.01%+0.0008 S (I250 Ω)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                           |                             |                                  |                           |                           |                            |  |  |
| Modo CW (Po            | tencia C         | onstante)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                           |                             |                                  |                           |                           |                            |  |  |
| Rango                  |                  | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) W                       | I500 W                    | 1200 W                      | 3000 W                           | 2500 W                    | 4500 W                    | 6000 W                     |  |  |
| Resolución             |                  | 10 mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                           |                             |                                  |                           |                           |                            |  |  |
| Exactitu               | d                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                           | 0.2% + (                    | 0.2% FS*                         |                           |                           |                            |  |  |
| Modo Transit           | orio (Mo         | do CC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                           |                             |                                  |                           |                           |                            |  |  |
| TI & T2                | (1)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                           | 20 μs – 3600 s /            | Resolución: 10 µs                |                           |                           |                            |  |  |
| Exactitu               | d                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                           | 5 μs + 1                    | 100 ppm                          |                           |                           |                            |  |  |
| Velocidad de           | Baja             | 0.001-0.25 A/μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000I-0.I A/μs           | 0.00I-0.25 A/μs           | 0.000I-0.I A/μs             | 0.00I-0.25 A/μs                  | 0.001-0.1 A/μs            | 0.00I-0.25 A/μs           | 0.00I-0.25 A/µ             |  |  |
| Respuesta (2)          | Alta             | 0.0I-2.5 A/μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00I-I A/μs              | 0.01-2.5 A/μs             | 0.00I-I A/μs                | 0.0I-2.5 A/μs                    | 0.01-1 A/μs               | 0.0I-2.5 A/μs             | 0.0I-2.5 A/μs              |  |  |

<sup>\*</sup>FS (Full Scale) A Escala Completa

 $<sup>^{\</sup>mbox{\scriptsize (I)}}$  Trenes de pulsos rápidos con largas transiciones podrían no ser alcanzados.

Las especificaciones de velocidad de respuesta no son garantizadas, pero son descripciones de rendimiento típico. El tiempo de transición actual está definido como el tiempo que toma la entrada en cambiar de 10% a 90%, o viceversa, de los valores de corriente programados. En caso de un gran cambio de carga, por ejemplo de no-carga a carga completa, el tiempo de transición actual será más largo que el tiempo esperado. La carga ajustará la velocidad de respuesta automáticamente para encajar dentro del rango (alto o bajo) más cercano al valor programado.

## **Especificaciones (Cont.)**

| Mod                                | elo             | 8610/B                                                                                                                                     | 8612/B                                | 8614/B                | 8616                   | 8620                                                      | 8622           | 8624        | 8625      |  |  |
|------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|------------------------|-----------------------------------------------------------|----------------|-------------|-----------|--|--|
| Lectura de Vo                      | Itaje           |                                                                                                                                            |                                       |                       |                        |                                                           |                |             |           |  |  |
|                                    | Bajo            | 0 – 18 V                                                                                                                                   | 0 – 50 V                              | 0 – 18 V              | 0 – 50 V               | 0 – 18 V                                                  | 0 – 50 V       | 0 –         | 18 V      |  |  |
| Rango                              | Alto            | 0 – I20 V                                                                                                                                  | 0 – 500 V                             | 0 – I20 V             | 0 – 500 V              | 0 – I20 V                                                 | 0 – 500 V      | 0 – I20 V   | 0 – I20 V |  |  |
|                                    | Baja            | 0.1 mV                                                                                                                                     | I mV                                  | 0.1 mV                |                        | I                                                         | I mV           |             |           |  |  |
| Resolución Alta                    | Alta            | I mV                                                                                                                                       | I0 mV                                 | I mV                  |                        |                                                           | IO mV          |             |           |  |  |
| Exacti                             | tud             |                                                                                                                                            | ±(0.05% +                             | 0.05% FS*)            | <u> </u>               |                                                           | ±(0.025% + 0   | 0.025% FS*) |           |  |  |
| Lectura de Co                      | rriente         |                                                                                                                                            | · · · · · · · · · · · · · · · · · · · | ·                     |                        | I.                                                        | ·              |             |           |  |  |
|                                    | Bajo            | 0 – I2 A                                                                                                                                   | 0 – 3 A                               | 0 – 24 A              | 0 – 6 A                | 0 – 48 A                                                  | 0 – I0 A       | 0 – 60 A    | 0 – 72 A  |  |  |
| Rango                              | Alto            | 0 – I20 A                                                                                                                                  | 0 – 30 A                              | 0 – 240 A             | 0 – 60 A               | 0 – 480 A                                                 | 0 – 100 A      | 0 – 600 A   | 0 – 720 A |  |  |
|                                    | Baja            | I mA                                                                                                                                       | 0.1 mA                                | I mA                  | 0.1 mA                 |                                                           | I m            |             |           |  |  |
| Resolución                         | Alta            | I0 mA                                                                                                                                      | I mA                                  | I0 mA                 | I mA                   |                                                           | 10 n           | ıA          |           |  |  |
| Exacti                             | tud             | ±(0.05%+<br>0.1% FS*)                                                                                                                      | ±(0.05%+<br>0.05% FS*)                | ±(0.05%+<br>0.1% FS*) | ±(0.05%+<br>0.05% FS*) | ±(0.05%+ ±(0.05%+ ±(0.05%+ 0.1% FS*) 0.05% FS*) 0.1% FS*) |                |             |           |  |  |
| Lectura de Po                      | tencia          |                                                                                                                                            |                                       | '                     |                        | ,                                                         |                |             |           |  |  |
| Rang                               | go              | 750                                                                                                                                        | 0 W                                   | 1500 W                | 1200 W                 | 3000 W                                                    | 2500 W         | 4500 W      | 6000 W    |  |  |
| Resolu                             | ción            | 10                                                                                                                                         | mW                                    |                       | 1                      | 100 ı                                                     | nW             |             |           |  |  |
| Exacti                             | tud             |                                                                                                                                            |                                       | 1                     | ±(0.2% + 0             | ).2% FS*)                                                 |                |             |           |  |  |
| Rango de Pro                       | tección (típico | o)                                                                                                                                         |                                       |                       |                        |                                                           |                |             |           |  |  |
| OPP (Exceso o                      | le Potencia)    | 76                                                                                                                                         | 0 W                                   | 1550 W                | 1250 W                 | 3050 W                                                    | 2550 W         | 4550 W      | 6050 W    |  |  |
| OCP (Exceso de Corriente)          | Baja            | 13.2 A                                                                                                                                     | 3.3 A                                 | 26.4 A                | 6.6 A                  | 26.4 A                                                    | II A           | 66 A        | 79.2 A    |  |  |
|                                    | Alta            | 132 A                                                                                                                                      | 33 A                                  | 264 A                 | 66 A                   | 264 A                                                     | IIO A          | 660 A       | 792 A     |  |  |
| OVP (Exceso                        | de Voltaje)     | 130 V                                                                                                                                      | 530 V                                 | 130 V                 | 530 V                  | 130 V                                                     | 530 V          | 130 V       | 130 V     |  |  |
| OT<br>(Exceso de Te                |                 | 185 °F (85 °C)                                                                                                                             |                                       |                       |                        |                                                           |                |             |           |  |  |
| Corto Circuito                     | (típico)        |                                                                                                                                            |                                       |                       |                        |                                                           |                |             |           |  |  |
| Corriente                          | Baja            | 13.2 A                                                                                                                                     | 3.3 A                                 | 26.4 A                | 6.6 A                  | 52.8 A                                                    | II A           | 66 A        | 79.2 A    |  |  |
| (CC)                               | Alta            | 132 A                                                                                                                                      | 33 A                                  | 264 A                 | 66 A                   | 528 A                                                     | IIO A          | 660 A       | 793 A     |  |  |
| Voltaje                            | (CV)            |                                                                                                                                            |                                       |                       | 0 \                    | V                                                         |                |             |           |  |  |
| Resistenc                          | ia (CR)         | $10~\text{m}\Omega$                                                                                                                        | I20 mΩ                                | 6 mΩ                  | 60 mΩ                  | 5 mΩ                                                      | 30 mΩ          | 3 mΩ        | 2.5 mΩ    |  |  |
| General (típic                     | o)              |                                                                                                                                            |                                       |                       |                        |                                                           |                |             |           |  |  |
| Terminal de i<br>de Ent            | •               | 300 kΩ                                                                                                                                     | ΙΜΩ                                   | 300 kΩ                | ΙΜΩ                    | 300 kΩ                                                    | ΙΜΩ            | 300 kΩ      | 300 kΩ    |  |  |
| Entrada                            | a AC            | II0 V/220 V ±10%, 50/60 Hz                                                                                                                 |                                       |                       |                        |                                                           |                |             |           |  |  |
| Temperatura (                      | Operación)      | 32 °F a 104 °F (0 °C a 40 °C)                                                                                                              |                                       |                       |                        |                                                           |                |             |           |  |  |
| Temperatura (A                     | Almacenaje)     | 14 °F a 140 °F (-10 °C a 60 °C)                                                                                                            |                                       |                       |                        |                                                           |                |             |           |  |  |
| Humedad                            |                 | Uso en interiores, ≤ 95%                                                                                                                   |                                       |                       |                        |                                                           |                |             |           |  |  |
| Seguridad                          |                 | EN61010-1:2001, Directiva de Bajo Voltaje EU 2006/95/EC                                                                                    |                                       |                       |                        |                                                           |                |             |           |  |  |
| Compatibilidad<br>Electromagnética |                 | Cumple la Directiva EMC 2004/108/EC, EN 61000-3-2:2006, EN 61000-3-3:1995+AI:2001+A2:2005<br>EN 61000-4-2/-3/-4/-5/-6/-II, EN 61326-I:2006 |                                       |                       |                        |                                                           |                |             |           |  |  |
| Dimensiones (Al x An x Pr)         |                 | 17.3" x 5.3" x 22.5" pulgadas (439 x 133.3 x 580 mm) 17.3" x 10.5" x 23.2" pulgadas (439 x 266 x 590 mm)                                   |                                       |                       |                        |                                                           |                |             |           |  |  |
| Pes                                | 0               |                                                                                                                                            |                                       | 54 libras             | (24.6 kg)              |                                                           |                | 142 libras  | (64.4 kg) |  |  |
| Garar                              | ntía            |                                                                                                                                            |                                       |                       | 3 Añ                   | íos                                                       |                |             |           |  |  |
| Accesorios                         | Estándar        |                                                                                                                                            |                                       | Manual del usua       | rio, cable de alimen   | tación y certificado                                      | de calibración |             |           |  |  |
| Accesorio (                        | Opcional        |                                                                                                                                            |                                       | TLF                   | WRI - Puntas de pri    | ueba de alta corrier                                      | ite            |             |           |  |  |

<sup>\*</sup>FS (Full Scale) A Completa Escala

## Cargas Electrónicas DC Programables Serie 8600/B

## Información para Ordenar

## Serie 8600/B - Cargas Electrónicas DC

| Con GPIB | Sin GPIB |
|----------|----------|
| 8600     | 8600B    |
| 8601     | 860IB    |
| 8602     | 8602B    |
| 8610     | 8610B    |
| 8612     | 8612B    |
| 8614     | 8614B    |
| 8616     | -        |
| 8620     | -        |
| 8622     | -        |
| 8624     | -        |
| 8625     | -        |

9

v103025 bkprecision.com

## Sobre B&K Precision

B&K Precision ha proveído instrumentos de prueba y de medida confiables a buen precio al mundo entero por más de 70 años.

Nuestra sede central en Yorba Linda, California alberga nuestras funciones administrativas y ejecutivas así como las de ventas y mercadeo, diseño, servicio y reparación. Nuestros clientes europeos están familiarizados con B&K a través de nuestra subsidiaria Sefram. Los ingenieros en Asia nos conocen a través de nuestras operaciones de B&K Precision Taiwán. Nuestros centros de servicio independientes atienden a clientes en Singapur, Malasia, Vietnam, e Indonesia.



# Administración del Sistema de Control de Calidad

La Corporación BK Precision es una compañía registrada ISO9001, y emplea prácticas de gestiones de calidad rastreables en todos sus procesos incluyendo los de desarrollo de productos, servicio y calibración.

ISO9001:2015

Entidad de Certificación: NSF-ISR Número de Certificación: 6Z241-IS8



## Videoteca

Conozca nuestros vídeos de descripciones de productos, demostraciones, y de aplicaciones en Inglés, Español y Portugués.

http://www.youtube.com/user/BKPrecisionVideos

## Aplicaciones de Productos

Explore todos nuestros productos respaldados y aplicaciones móviles. http://bkprecision.com/product-applications